欢迎访问 化工调查网!

当前所在:网站首页> 化工内参

科学家利用深度学习模型探究药物与多组学数据间的关联

时间:2023-02-26 来源:中华人民共和国科学技术部  作者:佚名

  

  患有糖尿病等基础疾病患者的药物反应模式是相对复杂的,可能涉及多个器官和因素,而大部分影响机制仍然是未知的。近年来,表型和多组学筛查可用于揭示疾病特征,并为研究药物在疾病进展中发挥的作用机制提供了新的手段。然而,多组学数据分析面临着数据降维、数据异质性与整合困难等多方面挑战。

  近期,丹麦哥本哈根大学研究团队开发了一个基于深度学习的框架,即MOVE(multi-omics variational autoencoders),并且将其应用于789名刚被诊断患有2型糖尿病患者的多组学表型数据,旨在探究药物与组学表型之间的关系。该团队开展了一系列试验,使用MOVE探究20多种常见的糖尿病用药的药物组学关联特征。研究结果显示,二甲双胍与2型糖尿病的12个临床标志物均有显著关联,且与7个蛋白显著相关。此外,还发现二甲双胍和奥美拉唑与微生物组之间有显著关联。研究团队指出,可以基于此类关联来量化药物相似性,发现新的潜在生物标志物,可能协助疾病诊断或增加治疗有效性。相关研究结果于2023年1月2日以“Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models”为题发表在《Nature Biotechnology》杂志上。

  注:此研究成果摘自《Nature Biotechnology》,文章内容不代表站观点和立场。


原文链接:https://www.most.gov.cn/gnwkjdt/202302/t20230221_184662.html
[免责声明] 本文来源于网络转载,仅供学习交流使用,不构成商业目的。版权归原作者所有,如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间处理。

本网概况| 联系我们| 会员服务| 免责声明| 环保项目简介| 网站地图| 本网招聘| 投稿服务|

全国政务信息一体化应用平台

本站部分信息由相应民事主体自行提供,该信息内容的真实性、准确性和合法性应由该民事主体负责。化工调查网 对此不承担任何保证责任。
本网部分转载文章、图片等无法联系到权利人,请相关权利人与本网站联系。

北京政讯通资讯中心主办 | 政讯通-全国政务信息一体化办公室 主管

化工调查网 huagongdc.org.cn 版权所有。

京ICP备16042780号-88

联系电话:010-69940054 010-80447989 监督电话:18511526897,违法和不良信息举报电话:010-57028685

第一办公区:北京市西城区砖塔胡同56号西配楼;第二办公区:北京市东城区建国门内大街26号新闻大厦5层

邮箱:huanbaofzxczx@163.com  客服QQ:2834255374 通联QQ:3404733191

北京政讯通资讯中心